Abstract

주성분 분석(PCA)은 차원 축소와 특징 추출을 위해 널리 사용되는 기법 중의 하나이지만 자승 오류의 사용으로 인해 잡음에 민감한 단점이 있다. 이러한 잡음 민감성을 개선하기 위해 다양한 방법이 소개되었고 그 중 improved robust fuzzy PCA(RF-PCA2)는 퍼지 소속도를 이용한 반복적 최적화 기법으로 다른 방법에 비해 우수한 성능을 보였다. 하지만 RF-PCA2 역시 국부적인 최적해에 빠질 수 있으며 그 원인 중 하나는 RF-PCA2 알고리듬이 소속도를 균일한 값으로 초기화시키기 때문이다. 또한 퍼지 소속도를 사용하고 있지만 여전히 목적함수가 자승 오류 최소화에 기초하고 있다는 사실도 그 원인이 된다. 이 논문에서는 RF-PCA2의 이러한 문제점을 개선한 RF-PCA3를 제안한다. 제안하는 알고리듬은 RF-PCA2의 목적 함수를 바탕으로 하고 있다. 여기에 PCA의 목적 함수를 추가하고 초기 소속도 값을 데이터의 분포로부터 계산함으로써 전역 최적해에 가까운 해를 얻을 수 있는 가능성을 높여준다. 이러한 사실들은 실험 결과를 통해 확인할 수 있다. Principal component analysis (PCA) is a well-known method for dimensionality reduction and feature extraction. Although PCA has been applied in many areas successfully, it is sensitive to outliers due to the use of sum-square-error. Several variants of PCA have been proposed to resolve the noise sensitivity and, among the variants, improved robust fuzzy PCA (RF-PCA2) demonstrated promising results. RF-PCA2, however, still can fall into a local optimum due to equal initial membership values for all data points. Another reason comes from the fact that RF-PCA2 is based on sum-square-error although fuzzy memberships are incorporated. In this paper, a variant of RF-PCA2 called RF-PCA3 is proposed. The proposed algorithm is based on the objective function of RF-PCA2. RF-PCA3 augments RF-PCA2 with the objective function of PCA and initial membership calculation using data distribution, which make RF-PCA3 to have more chance to converge on a better solution than that of RF-PCA2. RF-PCA3 outperforms RF-PCA2, which is demonstrated by experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.