Abstract
In this paper, we investigate several important issues on the implementation of a totally implantable microsystem for brain-machine interface that has been attracting a lot of attention recently. So far most of the scientific research has been focused on the high performance, low power electronics or systems such as neural signal amplifiers and wireless signal transmitters, but the real application of the implantable microsystem is affected significantly by a number of factors, ranging from design of the encapsulation structure to physiological and anatomical characteristics of the brain. In this work, we discuss on the thermal effect of the system, the detecting volume of the neural probes, wireless data transmission and power delivery, and physiological and anatomical factors that are critically important for the actual implementation of a totally brain implantable neural interface microsystem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Institute of Electronics Engineers of Korea
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.