Abstract

Algebras of distributions of binary isolating and semi-isolating formulae are derived objects for a given theory and reflect binary formula relations between 1-type realizations. These algebras are related to the following natural classification questions: 1) for a given class of theories, determine which algebras correspond to theories from that class, and classify those algebras; 2) classify theories from the class according to the isolating and semi-isolating formulae algebras defined by those theories. The description of a finite algebra of binary isolating formulas unambiguously implies the description of an algebra of binary semi-isolating formulas, which makes it possible to trace the behavior of all binary formula relations of a given theory. The paper describes algebras of binary formulas for tensor products. The Cayley tables are given for the obtained algebras. Based on these tables, theorems are formulated describing all algebras of binary formulae distributions for tensor multiplication theory of regular polygons on an edge. It is shown that they are completely described by two algebras

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.