Abstract

Normal and tangential contact between a cylindrical steel indenter (wheel) and an elastomer with high adhesive properties is investigated. In the case of indentation in the normal direction, a computer simulation of the process of indentation and detachment was carried out, which shows good coincidence with an experiment. For the rolling friction mode, when analyzing the measured dependences of the tangential component of the contact force on the wheel displacement, the adhesive component of the friction force was determined. The situation of sliding friction, in which the rotation of the wheel was impossible, is considered. In the presence of adhesion, the sliding friction force is proportional to the contact area. In the absence of adhesion (the elastomer is covered with a chalk dust), a stick-slip friction mode is realized. The frequency and amplitude of stick-slip transitions depend on the indentation depth of the indenter into the elastomer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call