Abstract

The paper investigates the feasibility of adding a liquid heater to an oil-immersed transformer. It proves that design the high efficiency of power transformers, losses due to idling and short circuits are substantial and are scattered in the environment as heat. The paper proposes a novel design that implements a liquid (coolant) heater to enable the unit not only to convert electricity, but also to generate heat. In order to analyze the feasibility of such heat recycling, the authors have developed an equivalent thermal circuit and a mathematical model thereof. Said heater can operate in two modes. In the passive mode, the coolant it contains only absorbs the heat emitted (lost) by the power transformer. In the active mode, it also receives the heat emitted due to the passage of electric current through the pipes of the heater. The paper further introduces the definition of heater efficiency. Studies have shown that up to 50 % of transformer heat losses can be recycled by heating the coolant in the heater. The paper presents the relationship between utilized heat and transformer losses, as well as heater efficiency as a function of coolant flow rate. The heater efficiency exceeds 90 % in the active mode.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.