Abstract

The transformation of the graphene-containing optical spectra photonic-crystal structure with a change in the chemical potential (μ) of graphene is studied. In the period of the structure, one layer is a graphene-containing periodic medium (SiO2/Gr)n , and the second layer is assumed to be made of pure silicon. In the case of unexcited graphene (μ = 0), the absorption in the structure exceeds the reflection and transmission for frequencies outside the photonic band gaps. Within these zones, most of the incident radiation is reflected, and there is no transmission at all. As μ increases outside the band gaps, the absorption decreases in the low-frequency region, and the transmission increases the stronger, the greater μ. In a structure with an inversion defect inside the band gaps, either suppression or significant rearrangement of the defect mode takes place.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.