Abstract
본 연구에서는 비선형적 모델인 웨이블렛-인공신경망을 적용하여 충주댐 유역의 일유입량을 예측하였다. 일반적으로 시계열 자료는 경향성, 주기성 및 추계학적 성분의 선형조합으로 이루어져 있다. 그러나 이러한 자료를 통해 시계열 모형 구축 시 경향성 및 주기성은 제거되어야하는 성분이다. 따라서 수문기상자료에 포함되어있는 경향성 및 주기성과 같은 비선형 동역학적 잡음과 측정과정에서 발생하는 단순잡음을 제거시키기 위해 디노이징기법인 웨이블렛 변환을 적용하였다. 웨이블렛 변환을 적용한 자료를 입력자료로 사용한 웨이블렛-인공신경망(WANN)과 원자료를 사용한 인공신경망(ANN)을비교하였다. 산정결과 결정계수와 선형회귀를 통한 기울기는 WANN이 ANN보다 각각0.032, 0.0115 더 큰값을 나타냈고, 타겟값과 예측값 사이의 오차를 나타내는 RMSE와 RRMSE는 WANN 모형이 ANN 보다 각각 37.388, 0.099 더 작은값을 나타냈다. 따라서 본 연구에서 적용한 WANN 모형이 ANN 보다 정확한 결과를 나타내었으며, 웨이블렛 변환을 통한 디노이징 기법의 적용이 잡음이 포함되어 있는 원자료의 사용보다 더 정확한 예측을 하는 것으로 판단된다. In this study, the daily inflow at the basin of Chungju dam is predicted using wavelet-artificial neural network for nonlinear model. Time series generally consists of a linear combination of trend, periodicity and stochastic component. However, when framing time series model through these data, trend and periodicity component have to be removed. Wavelet transform which is denoising technique is applied to remove nonlinear dynamic noise such as trend and periodicity included in hydrometeorological data and simple noise that arises in the measurement process. The wavelet-artificial neural network (WANN) using data applied wavelet transform as input variable and the artificial neural network (ANN) using only raw data are compared. As a results, coefficient of determination and the slope through linear regression show that WANN is higher than ANN by 0.031 and 0.0115 respectively. And RMSE and RRMSE of WANN are smaller than those of ANN by 37.388 and 0.099 respectively. Therefore, WANN model applied in this study shows more accurate results than ANN and application of denoising technique through wavelet transforms is expected that more accurate predictions than the use of raw data with noise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.