Abstract
AbstractNanowires (NWs) consisting of Ni/Cu and Co/Cu alternating layers with a diameter of 100 nm and layer thicknesses varying between 10 and 500 nm are prepared by template synthesis in pores of polymer track-etched membranes. Bath compositions and different regimes for pulsed electrodeposition of NWs are explored. A procedure for electrodeposition of NWs using pulses of equal charge is developed. By diminishing the amount of charge per pulse, initially we manage to lower the layer thickness to 10–15 nm, but further diminishing of charge in pulses leads to the blending of elemental composition of adjacent layers and/or formation of rod–shell nanostructures within the NWs. The coercive force (15–30 mT) and residual magnetization of our layered NWs are determined from magnetization measurements. For NWs with a layer thickness of 50–100 nm, the magnetization curves recorded in the out-of-plane and in-plane geometries are similar in shape and have similar parameters. For NWs with thicker layers (250 and 500 nm), magnetization curves are markedly different due to magnetic anisotropy (an easy magnetization axis emerges longitudinally to NWs) and interference between neighboring NWs. Magnetic force microscopy of isolated NWs identifies that the NWs comprise magnetic regions extending over ~100–150 nm. The NW can be partially remagnetized by applying an external magnetic field (+16 mT) longitudinally.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.