Abstract

The sources available for analysis do not explain why they adopted exactly such an accuracy (error) of the numerical diagram method for calculating core reinforced concrete elements (calculated and maximum permissible error values), such a control parameter for its evaluation. There is no definitive approach to estimating the error of the method under consideration yet. The available literature does not have a strict theoretical basis. The article is intended to try to correct this situation. For this purpose, the mathematical theory of numerical methods, metrology and the theory of reinforced concrete are involved. The classification of errors arising in determining the true value of the control parameter that integrally characterizes the stress-strain state of the element has been developed (unavoidable errors (≈12, %) – errors of the discrete nonlinear deformation model and inaccuracies in the initial data, errors of the numerical diagram method (≈5 %), computational errors (≈0 %)). The curvature of the axis of the reinforced concrete rod is taken as such a parameter. It is concluded that the maximum value of the permissible error of the numerical diagram method, which characterizes the accuracy, should not exceed 5 % and can be adjusted to decrease (increase accuracy) by clarifying the errors of the computational model and experimental base.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.