Abstract
이 논문에서는 아파트 매매가 활발히 일어나는 서울시내 64개 행정동들에 대해 아파트 전용면적별 실거래 매매가를 기준으로 군집분석을 실시하였다. 군집분석에 있어서 각 행정동의 실거래가에 대한 정보를 최대한 이용하기 위해 실거래가의 평균 뿐만 아니라 그 분포까지 고려할 수 있도록 전통적인 형태의 데이터를 히스토그램 형태의 데이터로 변환하여 분석을 하였다. 히스토그램 데이터는 심볼릭 데이터의 한 종류이고, 심볼릭 데이터는 기본적으로 구간, 목록, 히스토그램, 분포, 모형 등과 같이 데이터 자체가 내부적인 변동을 갖는 모든 형태의 데이터를 포함한다. 이러한 각 행정동들의 내부적인 매매가의 변동을 고려한 군집분석의 결과 강남구, 서초구, 송파구와 그에 인접한 행정동들이 상대적으로 다른 지역보다 매매가도 높았고 실거래가의 분포도 훨씬 더 넓은 것으로 조사되었다. 전반적으로 도심에 대한 접근성이 좋고 교육환경이 우수한 지역과 강북의 뉴타운 지역이 상대적으로 주변지역보다 더 높고 넓은 매매가 분포를 보이는 것으로 분석되었다. In this study, 64 administrative regions with high frequencies of apartment trade in Seoul, Korea are classified by the apartment sale price. To consider distributions of apartment price for each region as well as the mean of the price, the symbolic histogram-valued data approach is employed. Symbolic data include all types of data which have internal variation in themselves such as intervals, lists, histograms, distributions, and models, etc. As a result of the cluster analysis using symbolic histogram data, it is found that Gangnam, Seocho, and Songpa districts and regions near by those districts have relatively higher prices and larger dispersions. This result makes sense because those regions have good accessibility to downtown and educational environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Korean Data and Information Science Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.