Abstract

The purpose of the research was to study the aerodynamic features of the flow around the simplest structural elements of an aircraft, such as sharp and blunt-nose cones. For calculations we applied the perfect gas model. To describe flows with large adverse pressure gradients, we used the Menter's shear stress transfer model. We analyzed changes in the aerodynamic characteristics of the cones in a wide range of angles of attack α and flow Mach M∞ numbers. Furthermore, we investigated the parameters of the base region of the sharp cone at transonic and supersonic speeds, and compared the simulation results with the data of a physical experiment both in wind tunnels and on a ballistic installation. The comparison showed good agreement with the experimental data. Numerical simulation data can be applied to form the external appearance of aircraft for various purposes, to study the influence of the temperature factor on the flow around bodies, and to create semi-empirical models for calculating the parameters of the base region of conical bodies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.