Abstract

This study presents a mathematical model and a sliding mode observer of the injection system for common rail diesel engines. The injector model consists of three subsystems: the actuator subsystem, the mechanical subsystem, and the hydraulic subsystem. In the actuator subsystem, the constitutive relations of piezoelectricity are used to model the actuator made up of piezoelectric material. Based on the proposed model, the observer estimates the injection rate and injection timing, and can play a vital role of sensorless control of fuel injection in the near future. The sliding mode theory is applied to the observer design in order to overcome model uncertainties. The injector model and observer are evaluated through the injector experiments. The simulation results of the injector model are in good agreement with the experimental data. The sliding mode observer can effectively estimate the injection timing and the injection rate of the injector.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.