Abstract
<p>This article is devoted to the problem of estimating fully connected linear regression models using the maximum likelihood method. Previously, a special numerical method was developed for this purpose, based on solving a nonlinear system using the method of simple iterations. At the same time, the issues of choosing initial approximations and fulfilling sufficient conditions for convergence were not studied. This article proposes a new method for solving the optimization problem of estimating fully connected regressions, similar to the method of estimating orthogonal regressions. It has been proven that, with equal error variances of interconnected variables, estimates of b-parameters of fully connected regression are equal to the components of the eigenvector corresponding to the smallest eigenvalue of the inverse covariance matrix. And if the ratios of the error variances of the variables are equal to the ratios of the variances of the variables, then the b-parameter estimates are equal to the components of the eigenvector corresponding to the smallest eigenvalue of the inverse correlation matrix, multiplied by the specific ratios of the standard deviations of the variables. A numerical experiment was carried out to confirm the correctness of the developed mathematical apparatus. The proposed method for solving the optimization problem of estimating fully connected regressions can be effectively used when solving problems of constructing multiple fully connected linear regressions.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.