Abstract

The paper describes the approach to solving the problem of optimal planning of the production process. A discrete production system represented by the operations of machining, welding and painting was chosen as the object of research. The study states the problem of optimization of assembly production, which contains a typical criterion of optimality. A mechanism for meeting the criterion using a simulation model based on a Petri net is determined. The rules for developing feedback on the state of the network model and a method for controlling the simulation of the Petri net based on the analysis of its states are given. A binary function is used to analyze the states of the model. The developed approach to process optimization develops the theory of Petri nets, makes it more suitable for modeling complex systems with a branched structure and a large number of interconnections, which is a typical situation for production systems. The most universal approaches of control theory, e.g. feedback principle, are used, which implies a significant degree of universality and replicability of the approach. On the basis of the developed theoretical provisions, a test example is presented that characterizes the effect of their application. The presence of assembly production at most mechanical-engineering enterprises determines the high practical significance of the developed approach

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.