Abstract

Research on top-k query processing algorithms for analyzing big data have been spotlighted recently. However, because existing top-k query processing algorithms do not provide an efficient index structure, they incur high query processing costs and cannot support various types of queries. To solve these problems, we propose a top-k query processing algorithm using a view selection method based on a grid index. The proposed algorithm reduces the query processing time by retrieving the minimum number of grid cells for the query range, by using a grid index-based view selection method. Finally, we show from our performance analysis that the proposed scheme outperforms an existing scheme, in terms of both query processing time and query result accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.