Abstract

The results of MSTAR objects ten-classes classification using a VGG-type deep convolutional neural network with eight convolutional layers are presented. The maximum accuracy achieved by the network was 97.91%. In addition, the results of the MobileNetV1, Xception, InceptionV3, ResNet50, InceptionResNetV2, DenseNet121 networks, prepared using the transfer learning technique, are presented. It is shown that in the problem under consideration, the use of the listed pretrained convolutional networks did not improve the classification accuracy, which ranged from 93.79% to 97.36%. It has been established that even visually unobservable local features of the terrain background near each type of object are capable of providing a classification accuracy of about 51% (and not the expected 10% for a ten-alternative classification) even in the absence of object and their shadows. The procedure for preparing training data is described, which ensures the elimination of the influence of the terrain background on the result of neural network classification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.