Abstract
이 논문에서는 Schmeidler[14]와 Narukawa[12]에 나오는 보단조 가법 실수치 범함수 개념의 일반화인 보단조 가법 구간치 범함수를 정의하고 그들의 성질을 연구한다. 또한 보단조 가법 구간치 범함수와 구간치 쇼케이적분이 적당한 함수공간 상에서 서로간의 관계를 조사한다. 수의 값을 갖는 함수들의 쇼케이적분을 생각하고자 한다. 이러한 구간 수의 값을 갖는 함수들의 성질들을 조사한다. In this paper, we will define comonotonically additive interval-valued functionals which are generalized comonotonically additive real-valued functionals in Schmeidler[14] and Narukawa[12], and prove some properties of them. And we also investigate some relations between comonotonically additive interval-valued functionals and interval-valued Choquet integrals on a suitable function space, cf.[9,10,11,13].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Korean Institute of Intelligent Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.