Abstract
본 논문에서는 먼저 신경회로망의 학습에 오차역전파 학습 알고리즘을 사용하여 각 프레임에서의 음성 및 잡음 구간의 검출에 의한 음성인식 알고리즘을 제안한다. 그리고 신경회로망에 의하여 음성 및 잡음 구간의 검출에 따라서 각 프레임에서 잡음을 제거하는 스펙트럼 차감법을 제안한다. 본 실험에서는 제안한 음성인식알고리즘의 성능을 원음성에 백색잡음 및 자동차 잡음을 부가하여 인식율을 평가한다. 또한 인식시스템에 의하여 검출된 음성 및 잡음 구간을 이용하여 각 프레임에서의 스펙트럼 차감법에 의한 잡음제거의 실험결과를 나타낸다. 잡음에 의하여 오염된 음성에 대하여 신호대잡음비를 사용하여 본 알고리즘이 유효하다는 것을 확인한다. This paper first proposes the speech recognition algorithm by detection of the speech and noise sections at each frame using a neural network training by back-propagation algorithm, then proposes the spectral subtraction method which removes the noises at each frame according to detection of the speech and noise sections. In this experiment, the performance of the proposed recognition system was evaluated based on the recognition rate using various speeches that are degraded by white noise and car noise. Moreover, experimental results of the noise reduction by the spectral subtraction method demonstrate using the speech and noise sections detecting by the speech recognition algorithm at each frame. Based on measuring signal-to-noise ratio, experiments confirm that the proposed algorithm is effective for the speech by corrupted the noise using signal-to-noise ratio.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of the Korean Institute of Information and Communication Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.