Abstract
연결정보만을 이용하는 range-free 측위 기법의 성능은 이동성을 갖는 무선 단말 움직임에 취약한 문제점이 있다. 본 논문은 실제 전파 환경을 고려한 실내 네트워크에서 베이지안 필터를 사용하여 실시간으로 움직이는 무선장치를 추적하는 두 가지 알고리즘을 제안하였다. 제안하는 알고리즘은 측정 모델의 선형성에 따라 Kalman filter 와 Markov Chain Monte Carlo (MCMC) particle filter를 적용하였다. Kalman과 MCMC particle filter 기반 알고리즘은 각각 무선단말 간 연결정보를, 이동 단말의 한 홉 간격 내 단말로부터 수신하는 신호의 세기 (RSS: received signal strength)와 연결정보를 혼합한 융합정보를 측정 모델로 사용하였다. 정확한 시뮬레이션을 위해 실내 쇼핑몰 지도를 구현한 네트워크 지형, 그리고 라디오 불규칙도 모델을 적용하였다. 또한, 장애물 존재 여부에 따라 라디오 불규칙도를 분류하였다. 성능평가를 위해 MATLAB 시뮬레이션을 수행하였으며, 기존 range-free 측위 기법보다 향상된 위치정확도를 확인하였다. The range-free localization using connectivity information has problems of mobile tracking. This paper proposes two Bayesian filter-based mobile tracking algorithms considering a propagation scenario. Kalman and Markov Chain Monte Carlo (MCMC) particle filters are applied according to linearity of two measurement models. Measurement models of the Kalman and MCMC particle filter-based algorithms respectively are defined as connectivity between mobiles, information fusion of connectivity information and received signal strength (RSS) from neighbors within one-hop. To perform the accurate simulation, we consider a real indoor map of shopping mall and degree of radio irregularity (DOI) model. According to obstacles between mobiles, we assume two types of DOIs. We show the superiority of the proposed algorithm over existing range-free algorithms through MATLAB simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of Korean Institute of Communications and Information Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.