Abstract

Raspberries are a good resource of polyphenols and have a powerful antioxidant activity, but shelf life for raspberries is short which brings a lot of economic losses. In this study, we try to use cool-air (20~40°C) or hot-air (60~100°C) to produce semi-dried raspberries with extended shelf life, and to determine the best method for improving fruit quality by minimizing nutrient losses during drying processes. The effects of process variables (drying temperature and processing time) on the quality of final dried raspberries were investigated. Response surface methodology was employed to establish statistical models for simulating the drying processes, and the moisture residue content and the loss ratios of total phenolic content (TPC), vitamin C (VC), and ellagic acid (EA) that result from the drying processes of raspberries using either hot or cool-air were predicted. Superimposed contour plots have been successfully used in the determination of the optimum zone within the experimental region. Optimal conditions determined for achieving minimal losses of TPC, VC, and EA, and a final moisture residue of 45% using the hot-air drying process were a drying temperature of 65.75°C and a processing time of 4.3 hr. While for the cool-air process, the optimal conditions predicted were 21.3°C and 28.2 hr. Successful application of response surface methodology provided scientific reference for optimal conditions of semi-drying raspberries, minimizing nutrient losses and improving product quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.