Abstract

The article presents the results of evaluating technical state of electromechanical transport systems with ДК-211БМ traction electric engine. Resolution of the problem of increasing operation efficiency of land and water transport can be achieved in many respects by implementation of advanced tools of automation and control over diagnostic parameters of electromechanical systems. Reducing operating costs due to the application of energy-saving technologies in maintenance of electromechanical systems on land and water transport is one of the main requirements of the industrial scientific and technical program. Electromechanical transport systems comprise a large number of sensors and actuators located directly on production sites in operation conditions. In this regard, there appears a need to bring electromechanical systems in conformity with modern requirements of operational safety on the basis of scientifically substantiated design concepts, scientific achievements in the field of new materials, production, technologies and automation controlof technical conditions of transport systems. One of the essential tasks of building an adaptive automation control system of monitoring technical state of electromechanical systems is selection of diagnostic parameters. The selection of diagnostic parameters of control of technical state of traction electric machines is suggested to carry out using mathematical modeling of power indexes. With the help of a simulation model of electromechanical system of control over electrical DC machines type ДК-211БМ there were obtained diagnostic energy parameters of the city electromotive vehicles moving at different speeds. Application of the obtained diagnostic parameters helps to control the faults and failures in armature windings of dc electric machines of transport electromechanical systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.