Abstract
Reduced pressure chemical vapor deposition technology has been used to study SiGe heterostructure epitaxy and device issues, including SiGe relaxed buffers, proper control of Ge component and crystalline defects, two dimensional delta doping, and their influence on electrical properties of devices. From experiments, 2D profiles of B and P presented FWHM of 5 nm and 20 nm, respectively, and doses in 5×10/sup 11/ ∼ 3×10/sup 14/ ㎝/sup -2/ range. The results could be employed to fabricate SiGe/Si heterostructure field effect transistors with both Schottky contact and MOS structure for gate electrodes. I-V characteristics of 2D P-doped HFETs revealed normal behavior except the detrimental effect of crystalline defects created at SiGe/Si interfaces due to stress relaxation. On the contrary, sharp B-doping technology resulted in significant improvement in DC performance by 20-30 % in transconductance and short channel effect of SiGe HMOS. High peak concentration and mobility in 2D-doped SiGe heterostructures accompanied by remarkable improvements of electrical property illustrate feasible use for nano-sale FETs and integrated circuits for radio frequency wireless communication in particular.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Korean Institute of Electrical and Electronic Material Engineers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.