Abstract

This paper presents the effect of a reflective force computed from a first-order-hold method on the stability of a haptic system. A haptic system is composed of a haptic device with a mass and a damper, a virtual spring, a sampler and a sample-and-hold. The boundary condition of the maximum virtual stiffness is analytically derived by using the Routh-Hurwitz criterion and the condition shows that the maximum virtual stiffness is proportional to the square root of the mass and the damper of a haptic device and also is inversely proportional to the sampling time to the power of three over two. The effectiveness of the derived condition is evaluated by the simulation. When the reflective forces are computed by using the first-order-hold method, the maximum available stiffness to guarantee the stability is increased several hundred times as large as when the zero-order-hold method is applied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.