Abstract
축구 경기를 분석하고 이를 팀 전략 수립에 활용하는 축구 분석관의 역할이 강조됨에 따라, 방송용 축구 경기에서 주요 이벤트의 탐지와 같은 절차적 기능 이상의 고수준의 해석 방법들이 요구되고 있다. 본 논문에서는 인터넷 기반의 텍스트 방송인 축구 웹 캐스트에서 실시간으로 제공하는 텍스트 정보를 기반으로 텍스트 마이닝을 이용한 축구 경기의 전략 수립이 가능한 고수준의 해석 기법을 제안한다. 제안하는 해석기법은 축구 웹 캐스트의 텍스트 정보와 도메인 지식을 기반으로 축구 경기의 다양한 속성, 동작 그리고 이벤트 등 메타데이터를 추출하고, 인덱싱하고, 텍스트 마이닝의 다양한 해석 기법인 연관 규칙 마이닝, 성장도 분석, 그리고 패스파인더 네트워크 분석 기법 등을 사용함으로써 유용한 지식을 추출한다. 실제 2010년 월드컵의 스페인 팀 경기들을 중계한 웹 캐스트의 텍스트 정보를 대상으로 제안된 기법의 타당성을 실험적으로 검증한다. As the role of soccer game analyst who analyzes soccer games and creates soccer wining strategies is emphasized, it is required to have high-level analysis beyond the procedural ones such as main event detection in the context of IT based broadcasting soccer game research community. In this paper, we propose a novel approach to generate the high-level in-depth analysis results via real-time text based soccer Webcast and text mining. Proposed method creates a metadata such as attribute, action and event, build index, and then generate available knowledges via text mining techniques such as association rule mining, event growth index, and pathfinder network analysis using Webcast and domain knowledges. We carried out a feasibility experiment on the proposed technique with the Webcast text about Spain team's 2010 World Cup games.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.