Abstract

본 논문에서 망막 질환 요인간의 의존도 분석을 위해 효율적인 분류기를 활용할 수 있는 방안을 제시하였다. 먼저 여러 베이지안 네트워크 중에서 TAN (Tree-Augmented Naive Bayesian Network), GBN(General Bayesian Network)과 Markov Blanket으로 특징축소된 GBN과의 분류성능과 예측정확률을 비교분석하였다. 그리고 처음으로, 높은 성능을 보인 TAN을 망막 질환 임상데이터의 의존도 분석에 적용하였다. 의존도 분석 결과, 망막 질환의 진단과 예후 예측에 활용의 가능성을 보였다. In this paper, we suggested the possibility of using an efficient classifier for the dependency analysis of retinal disease. First, we analyzed the classification performance and the prediction accuracy of GBN (General Bayesian Network), GBN with reduced features by Markov Blanket and TAN (Tree-Augmented Naive Bayesian Network) among the various bayesian networks. And then, for the first time, we applied TAN showing high performance to the dependency analysis of the clinical data of retinal disease. As a result of this analysis, it showed applicability in the diagnosis and the prediction of prognosis of retinal disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.