Abstract

This paper considers the statistical characteristics on the air quality (PM10) of Korea collected hourly in 2011. PM10 in Korea exhibits very strong correlations even for higher lags, namely, long range dependence. It is power-law tailed in marginal distribution, and generalized Pareto distribution successfully captures the thicker tail than log-normal distribution. However, slowly decaying autocorrelations may confuse practitioners since a non-stationary model (such as changes in mean) can produce spurious long term correlations for finite samples. We conduct a statistical testing procedure to distinguish two models and argue that the high persistency can be explained by non-stationary changes in mean model rather than long range dependent time series models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.