Abstract

본 연구에서는 축류형 마이크로터빈의 단 수를 단 단에서부터 최대 6단까지 변경하면서 각 단에서의 공력특성을 측정하였다. 실험에 사용된 마이크로터빈은 터빈입구에서 유량계수가 2.0, 부하계수가 3.25이며 유로의 평균직경이 25.8mm인 소형 축류형 다단터빈이 적용되었다. 정익과 동익의 솔리디티는 0.67~0.75 범위의 값이 적용되었으며 입구에 일정한 질유량과 전압력으로 조정한 후에 터빈의 부하를 변경하면서 탈설계 영역에서의 공력특성을 측정하였다. 본 실험에서는 단 당 최대 2kW/kg/sec의 비출력이 얻어졌으나 단수의 증가에 따라 비출력의 증가폭은 다소 완화되었으며, 토오크의 경우는 단수가 증가되면서 낮은 회전수 영역에서는 토오크의 증가폭이 일정하나 높은 회전수영역에서는 토오크의 증가폭이 둔화되었다. 블레이드의 높이에 비하여 팁간격의 영향이 크므로 터빈의 효율은 낮으나 단 수의 증가에 따라 증가가 가능하다. An experimental study on an axial-type micro turbine which consists of maximum 6 stages is conducted to measure aerodynamic characteristics on each stage. This turbine has a 2.0 flow coefficient, 3.25 loading coefficient and 25.8mm mean diameter. The solidity of stators and rotors is within a 0.67~0.75, and the off-design performance is measured by changing the load after adjusting the mass flowrate and the total pressure to constant at inlet. A maximum specific output power of 2kW/kg/sec is obtained in one stage, but the increment of the specific output power with increasing stages is alleviated. In case of torque, the increment of the torque maintains to constant at low RPM region, but its increment become dull at high RPM region. The efficiency of the micro turbine becomes low because the tip gap effect is great due to the small blade, but it could be improved by increasing the stages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.