Abstract

In this paper, an <TEX>$\mathfrak{H}$</TEX>_/<TEX>$\mathfrak{H}_{\infty}$</TEX> fault detection and isolation (FDI) observer design problem is investigated for discrete-time delayed systems. To that end, a bank consisting of the sensor's number of observers is introduced. Each residual should be sensitive to a certain partial group of faults, but robust against the disturbance as far as possible. We formulate this multiobjective FDI problem as <TEX>$\mathfrak{H}$</TEX>_/<TEX>$\mathfrak{H}_{\infty}$</TEX> observers design problem. Sufficient design condition is expressed as iterative linear matrix inequalities. The fault is then detected and isolated by evaluating the residuals through an FDI decision logic. A computer simulation is provided for verification of the proposed technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.