Abstract
Transition-based dependency parsing requires much time and efforts to design and select features from a very large number of possible combinations. Recent studies have successfully applied Multi-Layer Perceptrons (MLP) to find solutions to this problem and to reduce the data sparseness. However, most of these methods have adopted greedy search and can only consider a limited amount of information from the context window. In this study, we use a Recurrent Neural Network to handle long dependencies between sub dependency trees of current state and current transition action. The results indicate that our method provided a higher accuracy (UAS) than an MLP based model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.