Abstract

The studies were carried out with the aim of optimizing microtubing of promising potato varieties in aseptic culture. The experiments studied such factors as the use of vessels of various sizes (test tubes with a diameter of 25 mm and plastic containers 18x18 cm, into which 10 ml of agar and 400 ml of liquid nutrient medium, respectively, were poured, respectively), the density of planting plants in containers (40, 60 and 80 stem explants), the composition of the nutrient medium during ontogenesis, cultivation of mini-tubers from in vitro microplants (control) and microtubers (≥ 0.9 cm and 0.5 ... 0.9 cm in size). When studying the possibility of modifying the nutrient medium based on the Murashige-Skoog recipe to induce tuberization in one variant, the sucrose concentration during growth was changed from 2% before the formation of four internodes by 8% after this phase, the kinetin content during the entire observation period was 0.5 mg/l. In the second variant, microplants were kept on a medium with 6% sucrose and 0.25 mg/l kinetin throughout ontogenesis. The highest yield of microtubers of the standard fraction (27 ... 94%) with a multiplication factor of 0.8 ... 2.7 pcs/plant was noted in the variant with 60 cuttings placed in a container. When grown in test tubes with a change of medium, 1.0 ... 1.5 microtubers were collected per plant with a standard fraction yield of 64 ... 78%. The use of container technology with a similar alternation of nutrient media increased the yield of the standard fraction in most of the studied varieties to 75 ... 86%. In variants with a constant sucrose content in the nutrient medium (6%), a very low multiplication factor was noted, which did not compensate for a sufficiently high yield of the standard fraction, regardless of the laboratory vessel used. The multiplication factor of test tube microplants during planting in the ground was higher than when planting microtubers, with a high yield of the standard fraction

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.