Abstract

The stability of the liquid layer in the Landay–Levich problem is theoretically investigated. The free energy of this layer is the sum of the dispersion (van der Waals) interaction and the specific electrical interaction caused by the presence of two electric layers at both interphase boundaries. In the framework of long-wave approximation, the stability of such a system with respect to perturbations is studied in the system of Navier–Stokes equations. A stability map is provided for different layer thicknesses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call