Abstract

The aim of this work is to develop a thermoemission cathode that would ensure the required operating parameters and remain operable after long, several-day, exposure to the air without any additional ampulization. Cathode thrmoemitter degradation (“poisoning”) processes are overviewed. The problem of degradation of tungsten-barium cathodes is caused by the penetration of chemically active substances (for example, oxygen) into the interior space of a cathode. The “poisoning” process is so complex that it can hardly be simulated by simple theoretical methods. Because of this, the cathode “poisoning” degree under exposure to the atmosphere is usually assessed using experimental data. The analysis of publications on the resistance of cathode emitters to atmospheric exposure showed that one of the most promising solutions to the cathode “poisoning’ problem is the use of an emitter based on barium scandate. A cathode construction diagram was chosen, and a laboratory prototype cathode was made. The current dependence of the discharge voltage at different xenon flow rates and the xenon flow rate dependence of the discharge voltage at different currents were studied experimentally (xenon was the plasma-forming gas). During the trests, the cathode was periodically removed from the vacuuum chamber to inspect it for further use, the maximum duration of continuous exposure to the air was 14 days, and the resets did not reveal any significant change in the performance. The use of barium scandate as an emission-active substance for the thermoemission cathode improved its resistance to atmospheric exposure. The practical use of the cathode developed in experimental studies, for example, in the vacuum chamber of the plasmaelectrodynamic setup of the Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, will eliminate frequent cathode replacements, thus significantly speeding up research activities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.