Abstract

Widespread use of synthetic antimicrobial drugs leads to the development of antibiotic resistance of pathogenic strains of microorganisms. Therefore, today researchers are very interested in drugs based on nanoparticles of metals, in particular silver and copper, which have antibacterial, antifungal and antiviral activity. One of the reasons for the high interest of researchers in AgNPs as an antimicrobial agent is the significantly lower toxicity of AgNPs compared to Ag+ ions. High antibacterial efficiency of silver nano¬particles is achieved due to their developed surface, which provides maximum contact with the environment. In addition, such nanoparticles are quite small and are able to penetrate cell membranes, to affect intracellular processes from within. Therefore, the aim of this work was to obtain concentrated colloidal silver solutions stabilized by citrate anions, which simultaneously provide satisfactory stabilization of colloidal silver solutions and are non-toxic, as well as to investigate the antimicrobial action of synthesized AgNPs. The solution of citrate stabilized silver nanoparticles (AgNPs) have been obtained via the reaction of reduction of silver nitrate by hydrazine in alkaline medium in the presence of sodium citrate. AgNPs were investigated using transmission electron microscopy (TEM) and UV-vis spectroscopy and the particles size and particles size distribution (PSD) were determined. It was observed that obtained AgNPs are mainly spherical shape. It was found that the mean diameter and PSD of AgNPs determined using TEM and UV-vis spectroscopy are close and equal to 14 and 5 nm and 15 and 4 nm respectively. Obtained solution was concentrated by evaporation at 70 C under reduced pressure up to achievement of AgNPs concentration equal to 200 mg/L. On the base of comparison of optical properties of initial silver sol and concentrated solution the minority of agglomeration of AgNPs was statement. At the same time AgNO3 test showed no change of UV-vis spectrum of concentrate that points on the absence of reducing agent in the solution; this fact indicate that hydrazine was eliminated from during the evaporation of initial AgNPs solution and obtained concentrate did not consist the toxic impurities. Antimicrobial activity of obtained citrate stabilised AgNPs against Gram-positive Bacillus subtilis and Gram-negative Escherichia coli bacterium was tested using disk diffusion method. It was found that AgNPs shown significant bactericidal effect even at low (25 mg/L) concentration as well as some higher efficiency against Gram-negative bacterium. There was also a slightly higher antimicrobial activity of the drug against gram-negative bacteria Escherichia coli compared with gram-positive bacteria Bacillus subtilis, due to the different structure of cell walls. In particular, the walls of gram-positive bacteria consist mainly of peptidoglycan (murein), and gram-negative bacteria have cell walls with a layer of peptidoglycan and an outer membrane with a lipopolysaccharide component, which is not present in gram-positive bacteria. Based on the studies, it can be concluded that the proposed method of synthesis of AgNPs is suitable for obtaining highly concentrated silver sols. This method of synthesis is simple in hardware design, scalable, and the resulting colloidal solutions are stable and do not contain harmful impurities. Therefore, due to the high antibacterial activity of citrate-anion-stabilized AgNPs against certain types of gram-positive and gram-negative bacteria, it can be recommended for the manufacture of bactericidal drugs for biomedical purposes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call