Abstract

Current trend in the last decade is the creation of resource-saving technology for production of composite materials. Purpose of the research, the results of which are presented in this paper is to develop on the basis of their material science, technology and other methods to ensure fracture toughness of the composite material on the basis of the waste timber for a predetermined period of operation of products, including railway sleepers, collapsible panels for forest transportation roads. The results of theoretical and experimental research to identify the influence of physical factors on the fracture toughness, the monolithic of structure of the composite material are given measures to protect it from the action of water are considered. The analysis of the two variants of stress and strain state in a cube of wood was made, the value of the principal stresses are found, through the direction, cosines of position of the main provisions are defined, and then the principal values of the relative deformations. An experiment to detect resistance of specimens of composite beams of the base composition, immersed in water was hold, which are then tested in pure bending. The advantages and disadvantages of the possible components of polymer matrix KM on the basis of wood were considered from positions of including them into its structure in order to increase water resistance, limiting tensile strength and environmental safety. The substantiation of the choice of the components of water-resistant composition of the matrix of the composite was given and the manufacturing techniques of its products for the transportation construction - railway sleepers, for example, in the existing shops of sleep-cutting; prefabricated slabs for logging roads is developed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.