Abstract
The development of unmanned aerial vehicles is of great interest to both the largest aircraft companies and design enthusiasts, and among the total volume of developments, the volume of multicopter unmanned aerial vehicles occupies one of the leading positions. In this regard, the analysis of existing developments and the definition of future research in this direction is relevant. Multi-helicopter drones have a wide range of functions in both military and civilian use.The paper collects and analyzes statistical data of micro-unmanned aerial vehicles of the multicopter type to determine the achievements in the field of design of micro-unmanned aerial vehicles (UAVs). The current classification of UAVs is considered; as a result of the analysis of statistical data its expansion is offered. The take-off and mass characteristics of the micro UAV are described. The tables showing the existing UAVs are given. In addition, the flight characteristics, aerodynamic schemes and type of engine that are most rationally suited for micro-unmanned aerial vehicles according to their purpose and class are determined.Based on the obtained data, a prototype model of a micro-UAV with improved characteristics was built. The model successfully completed all tasks. This indicates that the new UAV "Fear-1" is a successful project and it has the ability to remotely control by phone or any other equipment designed for this purpose. In addition, the designed device can additionally hang in the specified coordinates."Fear-1" confidently performs tasks in automatic mode, as well as independently decides to return to the starting point of takeoff, if: there is a loss of communication, the battery level has reached a certain level, the UAV has completed its task or used more miles -amperes than specified by the output parameters. The drone has the ability to fly in "Follow me" mode on the selected GPS transmitter. The quadcopter was tested in difficult weather conditions, when the wind force reached 8 points (about 22 m / s). Noise immunity tests were also performed in the industrial frequency range (from 2.4 GHz to 5.8 GHz).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Open Information and Computer Integrated Technologies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.