Abstract
For a stable position of the flame front in the combustion chambers of gas turbine power plants, the fresh gas-air mixture must be heated to the ignition temperature during the entire operation process. With air excess coefficients in the interval between the upper and lower concentration limits, reverse currents from the zone of developed combustion successfully cope with this task. When organizing low-temperature combustion near the lean limit, the contribution of reverse currents to heating the fresh gas-air mixture turns out to be insufficient and additional external heating of the components in special heaters with exhaust gases from the turbine is required. The temperature characteristics of the fresh gas-air mixture at the inlet to the chamber and in the zone of return currents, as well as combustion products in the developed flame zone, were obtained from the solution of the energy balance equations. The modes of low-temperature lean combustion with excess air coefficients exceeding the lower concentration limit α = 2 are considered. The calculations were carried out for two values of the ejection coefficient in the zone of reverse currents K = 0.14 and K = 0.30. A K value of 0.14 was obtained using empirical relationships. The value K = 0.30 was obtained from the condition that during stoichiometric combustion, the gas-air mixture is heated completely by reverse currents. It is shown that with an increase in the excess air ratio to ensure a stable position of the flame front, the role of external heating of components increases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Perm National Research Polytechnic University Aerospace Engineering Bulletin
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.