Abstract

Linear stability analysis of radiating counterflow diffusion flames is numerically conducted to examine the instability characteristics of cellular patterns. Lewis number is assumed to be 0.5 to consider diffusional-thermal instability. Near kinetic limit extinction regime, growth rates of disturbances always have real eigen-values and neutral stability condition of planar disturbances perfectly falls into quasi-steady extinction. Cellular instability of disturbance with transverse direction occurs just before steady extinction. However, near radiative limit extinction regime, the eigenvalues are complex and pulsating instability of planar disturbances appears prior to steady extinction. Cellular instability occurs before the onset of planar pulsating instability, which means the extension of flammability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.