Abstract

Definitions are given and the difference between positive and negative algebra of logic is indicated. It is noted that when switching from positive logic to negative, the elements of "Schaeffer's Stroke" and "Pierce's Arrow" change places. Similarly, conjunction changes with disjunction. The inverter retains its property regardless of its application in positive or negative logic. The laws and rules valid for the negative algebra of logic are presented. The method of transition from the positive algebra of logic to the negative one is presented. Elements of positive and negative logic are compared. On the basis of logic functions: (AᴧBᴧC)ᴧDvAᴧ(BᴧCᴧD)vAᴧ(BᴧC)ᴧDv(AᴧB)ᴧ(CᴧD), implemented by direct optimized, minimal, options matching device, as well as, the final options in bases 2-NOT-OR (2-AND-NOT), 4-NOT-OR (4-AND-NOT) for negative logic. The voltage table of K155LE1, K155LE3 microcircuits is presented. The truth table of K155LE1, K155LE3 microcircuits in negative logic algebra (as an element AND-NOT or NOT-OR) is presented. Truth tables of K176LE5, K176LE6 microcircuits are shown in positive logic algebra (OR-NOT). The voltage table of K176LE5, K176LE6 microcircuits is shown. The truth table of K176LE5, K176LE6 microcircuits is shown in negative logic algebra (as an AND-NOT or NOT-OR element). elements of negative logic. Conclusion about the results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.