Abstract

In this paper, two types of techniques for the prediction of radiated sound pressure due to vibration of a structure are investigated. The prediction performance using wave-number sensing technique is compared to that of conventional prediction method, such as Rayleigh's integral method, for the prediction of far-field radiated sound pressure. For a coupled plate, wave-number components are predicted by the vibration response of plate and the prediction performance of far-field sound is verified. In addition, the applicability of distributed sensors that are not allowable to Rayleigh's integral method is considered and these can replace point sensors. Experimental implementation verified the prediction accuracy of far-field sound radiation by the wave-number sensing technique. Prediction results from the technique are as good as those of Rayleigh's integral method and with distributed sensors, more reduced computation time is expected. To predict the radiated sound by the efficient configuration of structural sensors, composed(synthesized) mode considering sound power contribution is determined and from this size and location of sensors are chosen. Four types of sensor configuration are suggested, simulated and compared.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call