Abstract

The article considers the main aspects of studying the effective use of plastering machines and mixtures in construction through the use of automated and mechanized systems, units and robots. Theoretical aspect of the study of the process of plaster layer compaction with the help of a vibration platform of a robot plasterer with adjustable parameters. The main design and technological parameters of vibration compaction of the plaster layer and their influence on the efficiency of the process of compaction of vertical walls are revealed. The methods of experimental research are described, as well as experimental installations on which the laboratory experiment was carried out. The use of this technology allows to solve the problem of time costs and increase labor productivity indicators, as well as aspects of economic nature. When changing the physical and mechanical characteristics of the vibration platform its dependence of variation factors allows to form the most favorable conditions for the mechanical effect of vibrations on the efficiency of the process of plastering vertical walls. Plastering mixtures for obtaining a plaster layer are studied, the main physical and mechanical characteristics are analyzed, the requirements to be taken into account in the process of plastering are analyzed. The paper presents a comparison of physical and mechanical characteristics of the vibration platform, reveals the advantages and disadvantages of using different combinations of parameters. It is established that the use of a certain combination or change of one important parameter contributes to the increase of physical and mechanical characteristics in comparison with the traditional method of mechanical action.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.