Abstract

Due to various factors, such as the interpolation step or automatic correlators specifics, global digital elevation models (DEM) often have an effect of understating the heights, which leads to inaccurate display of structural landforms e.g. ridges. The algorithm of adaptive correction of structural landforms elevation on DEM is proposed in this article. The algorithm consists of two stages. In the first stage, an automatic classification of structural forms is performed based on height difference between neighboring DEM elements. In the second stage, the DEM elements are corrected based on the assigned classes. Adaptivity of the algorithm allows to use it for any kind of terrain and elevation ranges. The algorithm was tested on the global DEM ALOS World 3D (ALOS W3D30); the accuracy was assessed by geodetic reference network and ICESat mission data. The developed algorithm shows an improvement of DEM accuracy, especially in high-altitude areas, and it also helps to reveal areas requiring additional verification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.