Abstract
변화 검출 알고리즘은 두 영상 프레임을 비교하여 변화를 가져온 유입된 외부 객체의 영역을 검출 하는 것이다. 본 논문은 두 영상 간의 밝기 변화 요인을 유입 객체에 의한 요인, 객체의 표면에서 주변으로 반사된 반사광 및 그림자에 의한 요인, 내재된 잡음에 의한 요인 등으로 분류하고, 이를 바탕으로 유입된 객체의 영역을 정확하게 검출하는 새로운 변화 검출 방법을 제안한다. 변화 요인의 분류와 객체 영역의 검출을 위하여, 우선 두 영상 간의 밝기 변화 값의 히스토그램을 분석하여 다수의 임계값을 추정한다. 다음으로 유입 객체의 경계 후보 화소를 추정하고, 추정된 객체 경계 후보 화소와 임계값을 이용하여 영상을 다수의 영역으로 분할한다. 최종적으로 분할된 각 영역의 텍스처를 두 영상에서 각각 구하고 이들 간의 유사도를 이용하여 각 영역이 외부 유입 객체 영역인지 아닌지를 판단한다. 다른 조명 변화 특성을 가지는 다수의 영상에서 수행된 실험을 통하여 제안한 방법이 유입된 객체의 영역을 강인하게 검출함을 보여준다. Change detection algorithms take two image frames and return the locations of newly introduced objects which cause differences between the images. This paper presents a new change detection method, which classifies intensity changes due to introduced objects, reflected light and shadow from the objects to their neighborhood, and the noise, and exactly localizes the introduced objects. For classification and localization, first we analyze the histogram of the intensity difference between two images, and estimate multiple threshold values. Second we estimate candidate object boundaries using the gradient difference between two images. Using those threshold values and candidate object boundaries, we segment the frame difference image into multiple regions. Finally we classify whether each region belongs to the introduced objects or not using textures in the region. Experiments show that the proposed method exactly localizes the objects in various scenes with different lighting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.