Abstract

Within the framework of Hubbard’s model using an approximation of static fluctuations, the electronic structure and optical properties of compounds of C90 fullerene isomers with chlorine atoms are investigated. The energy spectrum of π electron subsystem is shown to be divided into several unbound electronic subsystems when the number of the attached chlorine atoms becomes greater than (or about) 30. Each of subsystems behaves like a separate system in this case. The energy spectra and optical absorption spectra of ten different chlorine compounds C90@Cln have been calculated. Their optical properties are predicted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.