Abstract

An algorithm for the biocatalytic conversion of polymers of subcellular structures of Saccharomyces cerevisiae 985-T has been developed. It was shown that the action of enzymes on cell wall mannoproteins and (3-glucans led to deformation of their structure and the transfer of more than 50% of polysaccharides to a soluble state with the formation of 13.4% reducing carbohydrates, 1.8% amine nitrogen and 7.7% free amino acids (biological-1). Biological-2 had an increased content of total carbohydrates (32.2%) and fiber (10.5%). It was found that the combined action of the complex of proteinases and peptidases contributed to an increase in the degree of hydrolysis of subcellular structures, which was accompanied by a growth of the content of amino nitrogen by 2.7 times, free amino acids by 3.1 times, and low-molecular peptides (up to 500 Da) by 3.5 times (biological-3). The obtained biologicals were characterized by a high content of phosphorus and potassium. It was shown that the use of enzyme systems that catalyze the hydrolysis of intracellular polymers in yeast biomass allows us to obtain products with different biochemical and structural-fractional composition, which determines their properties. Saccharomyces cerevisiae, enzymes, structural-fractional composition, functional ingredients The work was carried out at the expense of the subsidy for the implementation of the State Task.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call