Abstract

This work is devoted to the development of technology and special equipment for the cultivation of spontaneously developing functioning endothelial capillary networks in vitro as the basis of artificial cloth-like structures with desired biological properties. It is the scientific and engineering projects RFBR №94-04-13544 «Structural analysis of microvascular bifurcations" and №96-04-50991 «Cell and Tissue Engineering endothelium (formation in endothelial culture in vitro the functioning self-developing capillary networks)." The proposed technology allows the author to form three-dimensional capillary endothelial network around micro-fluidic arrays, immersed in a specially designed dynamic gel. In 2013, the Korean research team under the lea-dership Noo Li Jeon has reproduced, using a similar approach, the phenomenon of self-developing functioning endothelial capillary networks with mass transfer in vitro. It has fully confirmed the validity of the concept pro-posed in the listed projects. Using system of the mathematical modeling Matlab & Simulink and system engi-neering design Cadence Orcad it was developed simulation mathematical model and circuit diagrams experimental reactor modules, it allows to saving considerable financial resources allocated to research and de-velopment of this kind. The resulting model contains 5.4 million basic Simulink blocks and performs more than 7,000 different mathematical functions, reflecting the behavior of devices in stationary and non-stationary conditions. Device control is based on neural network technology. Portable stand-alone microcomputers cyber platform includes microfluidic matrix, generators of microflows liquid phase nutrient medium, life-support systems of endothelial culture system of automatic digital imaging process of angiogenesis, the transmission system of encrypted data over a secure radio, digital control systems. All systems are backed up multiple times, allowing the product to operate in stand-alone mode for a long time (up to a year or more).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.