Abstract

The paper analyzes the features of the acoustic emission (AE) signal generation during plasma-electrolytic oxidation (PEO) of the AMg6 aluminum alloy in a bipolar (anode-cathode) pulsed mode within each cycle of voltage application. The authors studied the range of PEO modes that almost completely covers all standard technological modes for processing aluminum alloys by the current densities (6–18 A/dm2) and current ratio in half-cycles (0.7–1.3), which allowed fixing and studying the AE accompanying the formation of oxide layers for various purposes. For the first time, due to AE registration, a new PEO stage was identified, in which there was no microarc breakdown to the substrate, but which was accompanied by an increase in the layer thickness, and the nature of which has not yet been determined. According to the known features of the oxidation stages, the authors systematized the repetitive forms of AE manifestation in the cycles of exposure and identified their five types and three subtypes. The study shows that the approach used to establish the PEO stages by the “acoustic emission amplitude” parameter has poor accuracy, since it does not take into account the form of signals and the half-period of their registration. Therefore, the authors developed and tested a new approach for analyzing AE frames synchronously with the cycles of change in the forming voltage during PEO, and proposed a new “acoustic-emission median” parameter, which allows identifying the main types and subtypes of signals accompanying the oxidation stages. An experimental study of the proposed AE parameter was carried out to identify these PEO stages, which confirmed the operability, high accuracy and sensitivity of the proposed parameter to the subtypes of AE signals recorded at the cathode stage of “soft sparking”. The latter is of particular interest, since it is a means of studying a given oxidation stage with a resolution equal to the exposure cycle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call