Abstract

We have studied MHD waves (Alfvén and fast compressional modes) in a homogeneous collisional three-component low-β plasma. The three-component plasma consists of electrons, ions, and neutrals with arbitrary ratio between collision frequencies and wave time scales. We have derived a general dispersion equation and relationships for phase velocity and collisional damping rates for MHD modes for various limiting cases: from weak collisions to a strong collisional coupling, and for longitudinal and oblique propagation. In a weak collision limit, the MHD eigen-modes are reduced to ordinary low-damping Alfvén and fast magnetosonic waves. For a partially ionized plasma with a strong collisional coupling of neutrals and ions, velocities of magnetosonic and Alfvén waves are substantially reduced, as compared to the Alfvén velocity in the ideal MHD theory. At a very low frequency, when neutrals and ions are strongly coupled, a possibility arises of weakly damping MHD modes, called “decelerated” MHD modes. These modes can be observed in the solar corona/chromosphere and in the F layer of the terrestrial ionosphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call