Abstract

This study explores the synoptic characteristics of cold days over South Korea and their relationship with large-scale climate variability. The cold day, which is different from cold surge, is defined when daily-mean surface air temperature, averaged over 11 KMA stations, is colder than 1-percentile temperature in each year by considering its long-term trend over 1960~2012. Such event is detected by quantile regression and the related synoptic patterns are identified in reanalysis data. Composite geopotential height anomalies at 500 hPa show that cold days are often preceded by positive anomalies in high latitudes and negative anomalies in midlatitudes on the west of Korea. While the formers are quasi-stationary and quasi-barotropic, and often qualified as blocking highs, the latters are associated with transient cyclones. At cold days, the north-south dipole in geopotential height anomalies becomes west-east dipole in the lower troposphere as high-latitude anticyclone expands equatorward to the Northern China and mid-latitude cyclone moves eastward and rapidly develops over the East Sea. The resulting northerlies cause cold days in Korea. By performing composite analyses of large-scale climate indices, it is further found that the occurrence of these cold days are preferable when the Arctic Oscillation is in its negative phase and/or East Asian monsoon circulation and Siberian high are anomalously strong.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call