Abstract
For the detection of moving objects, background subtraction methods are widely used. In case the background has variation, we need to update the background in real-time for the reliable detection of foreground objects. Gaussian mixture model (GMM) combined with probabilistic learning is one of the most popular methods for the real-time update of the background. However, it does not work well in the complex and dynamic backgrounds with high traffic regions. In this paper, we propose a new method for modelling and updating more reliably the complex and dynamic backgrounds based on the probabilistic learning and the layered processing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Korean Institute of Intelligent Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.