Abstract

In the work, the stability conditions for a solution of an evolutionary hyperbolic system with distributed parameters on a graph describing the oscillating process of continuous medium in a spatial network are indicated. The hyperbolic system is considered in the weak formulation: a weak solution of the system is a summable function that satisfies the integral identity which determines the variational formulation for the initial-boundary value problem. The basic idea, that has determined the content of this work, is to present a weak solution in the form of a generalized Fourier series and continue with an analysis of the convergence of this series and the series obtained by its single termwise differentiation. The used approach is based on a priori estimates of a weak solution and the construction (by the Fayedo–Galerkin method with a special basis, the system of eigenfunctions of the elliptic operator of a hyperbolic equation) of a weakly compact family of approximate solutions in the selected state space. The obtained results underlie the analysis of optimal control problems of oscillations of netset-like industrial constructions which have interesting analogies with multi-phase problems of multidimensional hydrodynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.